Convergence and stability of balanced methods for stochastic delay integro-differential equations
نویسندگان
چکیده
This paper deals with a family of balanced implicit methods for the stochastic delay integro-differential equations. It is shown that the balanced methods, which own the implicit iterative scheme in the diffusion term, give strong convergence rate of at least 1/2. It proves that the mean-square stability for the stochastic delay integro-differential equations is inherited by the strong balanced methods and the weak balanced methods with sufficiently small stepsizes. Several numerical experiments are given for illustration and show that the fully implicit methods are superior to those of the explicit methods in terms of mean-square stabilities. 2014 Elsevier Inc. All rights reserved.
منابع مشابه
Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملConvergence and stability of the semi-implicit Euler method for linear stochastic delay integro-differential equations
Delay integro-differential equations are very important in biology, medicine and many other fields. If we take random noise into account, we can obtain many stochastic delay integro-differential equations (SDIDEs). As a special case of stochastic functional differential equations (SFDEs), the fundamental theory of existence and uniqueness of the solution of SDIDEs can be regarded similarly to t...
متن کاملApplication of the block backward differential formula for numerical solution of Volterra integro-differential equations
In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...
متن کاملA numerical method for solving delay-fractional differential and integro-differential equations
This article develops a direct method for solving numerically multi delay-fractional differential and integro-differential equations. A Galerkin method based on Legendre polynomials is implemented for solving linear and nonlinear of equations. The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations. A conver...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 237 شماره
صفحات -
تاریخ انتشار 2014